©1996-2019 All
Rights Reserved.
Online Journal of Bioinformatics. You may not store
these pages in any form except for your own personal use. All other usage or
distribution is illegal under international copyright treaties. Permission to use any of these pages in any other way besides the
before mentioned must be gained in writing from the publisher. This
article is exclusively copyrighted in its entirety to OJB publications. This
article may be copied once but may not be reproduced or re-transmitted without
the express permission of the editors.
OJB
Online Journal of Bioinformatics
Volume 6 : 8-21, 2005.
A novel method to predict
protein subcellular localizations
Huang J, Shi H
School of Computer Science and Mathematics
and Statistics, Wuhan University and School of Science, Huazhong
Agricultural University, Hubei Province, P.R. China.
ABSTRACT
Huang J, Shi
H, A novel method to predict protein subcellular localizations, Onl J Bioinform., 6:8-21, 2004. Amino acid
similarity and structure were used in a model to predict subcellular localizations
for prokaryotic and eukaryotic proteins. Tested with Reinhart and Hubbard’s
dataset, prediction accuracies reached 100% using the self-consistency test,
92% for prokaryotic sequences and 79.2% for eukaryotic protein sequences with
the jackknife test. The results suggest that amino acid structure may be a
useful predictor of protein subcellular localization.
KEY WORDS:
Support vector machine, subcellular location, amino acid similarity.
FULL-TEXT
(SUBSCRIBE OR PURCHASE TITLE $25USD)