©1996-2019. All Rights Reserved. Online Journal
of Bioinformatics . You
may not store these pages in any form except for your own personal use. All
other usage or distribution is illegal under international copyright treaties.
Permission to use any of these pages in any other way besides the before mentioned must be gained in writing from
the publisher. This article is exclusively copyrighted in its entirety to OJB
publications. This article may be copied once but may not be, reproduced or re-transmitted without the express permission of the
editors. This journal satisfies the refereeing requirements
(DEST) for the Higher Education Research Data Collection (Australia). Linking: To link to this page or any pages linking
to this page you must link directly to this page only here rather than put up
your own page.
OJBTM
Online Journal of Bioinformatics ©
Volume 17(2):96-104, 2016.
In
silico docking of curcumin inhibitor with α-Glucosidase in type 2 diabetes.
Sanjeeva Prasad Tarigopula.
Department of Zoology, Sri Krishnadevaraya
University, Anantapur, Andhra Pradesh,
ABSTRACT
Tarigopula SP., In silico
docking of curcumin inhibitor with α-Glucosidase in type 2 diabetes, Onl J Bioinform., 17(2):96-104, 2016. α-Glucosidase catalyzes degradation of diet polysaccharides to
absorbable monosaccharide and therefore its inhibition could delay postprandial
hyperglycemia in type 2 diabetes. We describe model docking for potential
natural inhibitors of α-Glucosidase such as curcumin. Homology modeling of
human α-Glucosidase was performed using crystal structure of 2QLY created
by Modeller software. The model was
refined after energy minimization validated by Errat procheck and verify 3D graph programs. The stable
structure was then docked with curcumin and its derivatives of natural
compounds selected from the literature. ILE19, LEU20, PRO22, ALA23, MET25,
ASP26, TYR29 and ARG61 of α-Glucosidase were bound to inhibitors by strong
hydrogen interaction and the results suggested that TYR77, VAL78, ASN82, ILE83,
GLU102 residues in α-Glucosidase were also involved in hydrogen bonding
contributing to stability of the complex. A curcumin derivative (34) showed
best docking result with α-glucosidase.
Key words: Curcumin, Alpha glucosidase, modeling and docking.
FULL-TEXT(SUBSCRIPTION OR PURCHASE
TITLE $25USD)